The blocks and weights of finite special linear and unitary groups
نویسندگان
چکیده
منابع مشابه
on the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولQuadratic Unipotent Blocks in General Linear, Unitary and Symplectic Groups
An irreducible ordinary character of a finite reductive group is called quadratic unipotent if it corresponds under Jordan decomposition to a semisimple element s in a dual group such that s = 1. We prove that there is a bijection between, on the one hand the set of quadratic unipotent characters of GL(n, q) or U(n, q) for all n ≥ 0 and on the other hand, the set of quadratic unipotent characte...
متن کاملOn Crdaha and Finite General Linear and Unitary Groups
We show a connection between Lusztig induction operators in finite general linear and unitary groups and parabolic induction in cyclotomic rational double affine Hecke algebras. Two applications are given: an explanation of a bijection result of Broué, Malle and Michel, and some results on modular decomposition numbers of finite general groups. 2010 AMS Subject Classification: 20C33 Dedicated t...
متن کاملBehavior of $R$-groups for $p$-adic inner forms of quasi-split special unitary groups
We study $R$-groups for $p$-adic inner forms of quasi-split special unitary groups. We prove Arthur's conjecture, the isomorphism between the Knapp-Stein $R$-group and the Langlands-Arthur $R$-group, for quasi-split special unitary groups and their inner forms. Furthermore, we investigate the invariance of the Knapp-Stein $R$-group within $L$-packets and between inner forms. This w...
متن کاملTHE RATIONAL CHARACTER TABLE OF SPECIAL LINEAR GROUPS
In this paper we will give the character table of the irreducible rational representations of G=SL (2, q) where q= , p prime, n>O, by using the character table and the Schur indices of SL(2,q).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2019
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2019.01.004